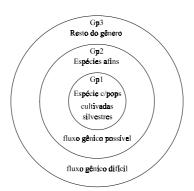
Amostragem para Conservação e Uso *Ex Situ*

Charles R. Clement

"A variabilidade genética é um dos princípios da vida e esta não teria desenvolvida em sua ausência." (Borém, 2001)

"Amostragem é crítico para a conservação de recursos genéticos. Então, o coletor é obrigado a obter a coleção mais rica possível para um dado investimento." (Brown & Marshall, 1995)


- 1. Variabilidade genética em populações Lembre genética de populações
 - a. Depende de:
 - i. Tamanho Ne
 - ii. Riqueza alélica = nº alelos presentes
 - iii. Sistema de cruzamento
 - (1) Alógama variabilidade máxima entre individuos
 - (2) Autógama variabilidade máxima entre populações
 - (3) Apomítica similar ao autógama
 - iv. Variabilidade ambiental
 - b. Sexo é fundamental! Em conservação de recursos genéticos também!
 - i. Cria novas combinações com os mesmos alelos
 - ii. Supõe-se que 2 indivíduos possuem diferentes alelos em 20 genes

 - O número de gametas possíveis (F₁) é 2ⁿ, no caso 2²⁰
 Com acasalmente ao acaso, o número de genótipos diferentes na F₂ é 3ⁿ, no caso $3^{20} = 3.5$ bilhões
 - iii. Como amostrar corretamente quando cada indivíduo é diferente?
 - (1) Amostrar ao acaso a base da conservação
 - c. Tipos de alelos O alvo do coletor
 - i. Comum, amplamente distribuido
 - ii. Comum, localmente distribuido
 - iii. Raro, amplamente distribuido
 - iv. Raro, localmente distribuido
 - v. Objetivo do coletor: tipo 2

	Local	Amplo
Comum	0	
Raro		

- 2. Variabilidade genética disponível Alelos facil e dificilmente disponíveis
 - a. O conceito de gene pools (Harlan & de Wit 1971) grupos gênicos
 - b. Gene pool primário (Gp 1) a espécie alvo
 - i. Fluxo gênico ~ livre
 - ii. Fertilidade ~ completa sem barreiras genéticas
 - iii. Cruzamentos cultivado/silvestre pode ter menor adaptação
 - c. Gene pool secundário (Gp 2) as espécies afins
 - i. Fluxo gênico possível
 - ii. Fertilidade reduzida com barreiras genéticas moderadas

- d. Gene pool terciário (Gp 3) o resto do gênero
 - i. Fluxo gênico dificil
 - ii. Fertilidade baixíssima com barreiras genéticas fortes
 - iii. Resgate de embriões necessário para uso

- 3. Valor dos *gene pools* Conceitual e praticamente
 - a. Conceito desenvolvido antes de sistemática molecular
 - i. Ajudou a organizar a sistemática de plantas cultivadas
 - ii. Ajudou a organizar amostragem e coleta
 - b. Conceito útil para planejar coleções
 - i. Representatividade de cada pool
 - ii. Esforço de coleta
- 4. Amostragem Marshall & Brown (1975)
 - a. Objetivo: Coletar 1 cópia de 95% dos alelos presentes em frequências maior que 0,05 em cada população
 - b. 59 gametas não relacionadas coletadas ao acaso
 - i. 30 genótipos de populações alógamas ou apomíticas
 - ii. 59 genótipos de populações autógamas
 - c. Obviamente desenhado para plantas anuais!
- 5. Amostragem Brown & Marshall (1995)
 - a. Objetivo: Como 1ª proposta
 - b. Número e localização dos sítios de amostragem
 - i. $N^0 = 50$
 - ii. Localização ecogeográfica
 - c. Número de plantas em cada sítio = 50
 - d. Escolha das plantas = ao acaso
 - e. Número e tipo de propágulos / planta bastante
 - f. Ainda desenhado para plantas anuais!
- 6. Modificações da estratégia básica Espécies são diferentes
 - a. Diferênças devidas a:
 - b. Distribuição
 - c. História de vida
 - d. Sistema genético (de reprodução)
- 7. Modificações Distribuição
 - a. Amplitude geográfica > + locais
 - b. Abundância local > facilidade

- c. Migração entre populações > menor F_{ST}
- d. Diversidade de habitats > maior $F_{ST} >$ coleta estratificada
- 8. Modificações História de vida
 - a. Duração do ciclo de vida > sementes e gemas
 - b. Estrutura etária da população > ao acaso
 - c. Reprodução vegetativa > sementes e gemas
 - d. Fecundidade > facilidade
 - e. Fenologia > planejamento cuidadoso
- 9. Modificações Sistema genético
 - a. Sistema de acasalamento
 - i. Alógamo variabilidade máxima entre individuos
 - ii. Autógamo variabilidade máxima entre populações
 - iii. Apomítico similar ao autógama
 - b. Polinização
 - i. Vento mais uniformidade
 - ii. Animal mais estrutura na variabilidade
- 10. Amostragem no mundo real Razão beneficio / custo
 - a. Somente cultivos importantes justificam amostragem completa
 - i. 50 populações amplamente distribuidas = \$\$\$
 - ii. $50^2 = 2500$ amostras = \$\$\$ p/manter
 - b. Escala depende de \$\$\$
 - i. Quando apenas \$, reduz os 50's proporcionalmente
 - c. Ou, coletar para melhoramento
 - i. Criando justificativos futuros para conservação
- 11. Árvores Fruteiras, florestais ou PFNMs
 - a. Desvantagens:
 - i. Exigem coleções vivas sementes recalcitrantes
 - ii. Exigem muito espaço no campo muito manutenção
 - b. Vantagens:
 - i. Geralmente alógamas cada indivíduo diferente
 - ii. Propagação vegetativa frequentemente possível
 - (1) Permite coleção de clones
 - (2) Requer apenas 3 indivíduos / acesso
 - (3) (Se prop. veg. não possível > desvantagem!)
- 12. Prova relâmpago 100 palavras ou menos
 - a. Assumindo \$\$\$ para coleta e \$ para manutenção, como deveria amostrar mogno na Amazônia?