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1999. There may have been 4-5 million people in Amazonia at the time of European contact. These
people cultivated or managed at least 138 plant species in 1492. Many of these crop genetic
resources were human artifacts that required human intervention for their maintenance, i.e., they
were in an advanced state of domestication. Consequently, there was a relationship between the
decline of Amazonian Amerindian populations and the loss of their crop genetic heritage after
contact. This relationship was influenced by the crop’s degree of domestication, its life history, the
degree of landscape domestication where it was grown, the number of human societies that used it,
and its importance to these societies. Amazonian crop genetic erosion probably reflects an order of
magnitude loss and the losses continue today. 

1492 e a perda dos recursos genéticos da Amazônia. I. A relação entre domesticação e o declínio das
populações humanas. A Amazônia poderia ter tido de 4 a 5 milhões de habitantes quando os
Europeus chegaram. Estes povos cultivaram ou manejaram pelo menos 138 espécies vegetais em
1492. Muitos destes recursos genéticos eram artefatos humanos que requeriam a intervenção humana
para sua manutenção, ou seja, estavam num estado avançado de domesticação. Conseqüentemente,
existiu uma relação entre o declínio das populações indígenas da Amazônia e a perda de seus
recursos genéticos após o contato. Esta relação foi influenciada pelo grau de domesticação do
cultivo, sua história de vida, o grau de domesticação da paisagem em que foi cultivada, o número de
sociedades indígenas que o utilizou, e sua importância a estas sociedades. A erosão dos recursos
genéticos indígenas da Amazônia provavelmente reflete uma perda de um ordem de magnitude e as
perdas continuam hoje.
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The crop genetic resources of the Neotropics are extremely rich and varied. They
represent one of the greatest pre-Columbian Amerindian achievements and continue to
benefit humans around the world (Harlan 1992:235). At least 257 species were cultivated in
the Americas when Columbus arrived in 1492 (León 1992), several of which are staples
today in various parts of the world, e.g., maize (Zea mays), potato (Solanum tuberosum), and
cassava (Manihot esculenta). Many of these crop genetic resources are human artifacts and
depend upon humans for their continued existence. During the centuries immediately after
European contact, human populations in the Americas were drastically reduced, with as many
as 90-95% of the people killed by European diseases or resisting the conqueror’s attempts to
enslave them (Denevan 1992b; Dobyns 1966). Amazonia occupies half of South America
but, because of lack of data, is often neglected when discussing American crop origins and



diversity, while attention is focused on the better studied Andes (Pearsall 1992). In this
paper, I hypothesize that this lack of attention is not due to a paucity of indigenous crop
plants in pre-Columbian times, but is partially the result of the post-Columbian demographic
collapse in the Amazon basin and the adjacent lowlands in northern South America. A
companion paper discusses the biogeography of crop diversity at contact.

American prehistory is now the subject of ample debate generated by new, sometimes
controversial research findings. Genetic analyses (e.g., Bonatto & Salzano 1997a, b) suggest
human arrival in the Americas well before 12,000 years before present (BP), the date most
widely accepted until recently (Cavalli-Sforza et al. 1994). The earliest humans in South
America are now thought to have been broad-spectrum hunter-gatherers (Dillehay et al.
1992), and occupied parts of Amazonia very early (Roosevelt et al. 1996). The oldest pottery
yet reported was recently found along the eastern reaches of the Amazon River, dated to 7-
8,000 BP (Roosevelt et al. 1991). Pottery is generally associated with a shift to sedentary
lifestyles (Meggers 1988), necessary for intensive agricultural development. In the
millennium before contact, some human societies built earthworks in various parts of
lowland northern South America. These earthworks were designed to control water for crop
production (Denevan 1966; Denevan and Zucchi 1978), or as habitation mounds (Roosevelt
1993), suggesting high local human population densities or long gestation periods or efficient
societal organization to supply the labor for their construction. 

When Francisco de Orellana descended the Amazon River in 1542, he reported high
population densities along the Amazon River floodplains, the várzeas (Carvajal 1894;
Denevan 1992b), although the reliability of this report is questioned (Galloway 1992 and
Gheerbrant 1992, cited by Meggers 1993-5). Denevan (1992a) emphasizes, however, that
“high” is relative to other parts of Amazonia, not to the Andes, MesoAmerica or some
Caribbean islands. Given the long occupation and the possibility of advanced societies
(Roosevelt 1993), one would expect to find a rich crop genetic heritage, as occurs in other
areas with long occupation and/or advanced societies (Harlan 1992:52; Hawkes 1983:67;
Vavilov 1992a, b).

A rich crop genetic heritage and associated crop management practices were probably
major instruments for “the remarkable success of the indigenous population in enhancing the
subsistence potential of one of the world’s most unpredictable and ecologically complex
regions...” (Meggers 1992a:38). In this paper I hypothesize that a significant portion of this
heritage was lost when the indigenous human populations were nearly eradicated. Due to the
lack of physical evidence, i.e., the crop genetic diversity itself, this paper defines landscape
and plant domestication and relates them to genetic erosion when human populations
disappear; lists the crop species probably present at contact and categorizes them with respect
to their degree of domestication; and reviews estimates of Amerindian population density at
contact and the extent of population decline suffered by these peoples. The synthesis of this
information provides an order of magnitude estimate of the post-contact collapse of
Amazonian crop genetic resources.

LANDSCAPE AND PLANT DOMESTICATION
Clear definitions of domestication are essential to understanding the rapid loss of crop

genetic resources in Amazonia after European contact. Domestication of a plant or animal
species is a co-evolutionary process, so one expects to find plant or animal populations that
exhibit various degrees of domestication (Harlan 1992:64). Domestication of the biotic and
abiotic landscape is a cultural process, where human knowledge about the consequences of
environmental manipulation accumulates and becomes more comprehensive over time
(Harris 1989). Consequently, it is important to define both plant and landscape domestication



and some categories within each that are important for the present discussion. As Harris
(1989) emphasizes, domestication is a continuum of human investment in selection and
environmental manipulation, so its subcategories are merely constructs that imperfectly
reflect the real world. It is also important to remember that indigenous peoples frequently
practice(d) all forms of landscape domestication at the same time (Harris 1989; Rindos
1984:153) and that they do not always distinguish domesticated from wild plants the way I
do here (V.M. Patiño, pers. com., 1994).

Plant Domestication is a co-evolutionary process by which human selection on the
phenotypes of promoted, managed or cultivated plant populations results in changes in the
population’s genotypes that make them more useful to humans and better adapted to human
intervention in the landscape. As Darwin (1882) pointed out, human selection may be either
unconscious or directed (Heiser 1988). For plant domestication to take place, however, there
must be selection and management to cause differential reproduction and survival, contrary
to Rindos’ (1984:154) definition that includes co-evolution without human selection. The
degree of change in the targeted population can vary:
1. Wild: A naturally evolved population whose genotypes and phenotypes have not been
modified by human intervention.
2. Incidentally Co-Evolved: A population that volunteers and adapts in a human disturbed
environment, possibly undergoing genetic change, but without human selection. This
definition corresponds approximately to Rindos’ (1984:154) “incidental domestication.”
Many weeds are examples of incidentally co-evolved species, which can also enter the
domestication process if humans start to select for their useful traits and start to manage or
cultivate them (Harlan 1992:90).
3. Incipiently Domesticated: A population that has been modified by human selection and
intervention (at the very least being promoted), but whose average phenotype is still within
the range of variation found in the wild population for the trait(s) subject to selection. The
variance of this average is probably smaller than that of the original wild population,
however, as selection has started to reduce genetic variability. This definition corresponds
roughly to Rindos’ (1984:158) “specialized domestication.”
4. Semi-Domesticated: A population that is significantly modified by human selection and
intervention (at the very least being managed) so that the average phenotype may diverge
from the range of variation found in the wild population for the trait(s) subject to selection.
The variance of this phenotypic average may be larger than that of the wild population,
because the phenotypic variation now includes both types that are common in the wild
population and types that are novel. Underlying genetic variability [e.g., isozyme variation
(Doebley 1989)], however, continues to decrease because fewer individuals meet the
selection criteria and are therefore included in the next generation. The plants retain
sufficient ecological adaptability to survive in the wild if human intervention ceases, but the
phenotypic variation selected for by humans will gradually disappear in the natural
environment.
5. Domesticated: A plant population similar to (4) but whose ecological adaptability has
been reduced to the point that it can only survive in human-created environments,
specifically in cultivated landscapes (Harlan 1992:64). Genetic variability is generally less
than in (4) because of increased selection pressure and loss of ecological adaptation. If
human intervention ceases, the population dies out in short order, depending upon its life
history, stature and the type of vegetation that invades the abandoned area. In clonally
propagated crops, a single genotype may be the domesticate, but also is lost soon after it is
abandoned.



5a. Landrace: A domesticated (or occasionally semi-domesticated) population selected in a
cultivated landscape within a restricted geographical region with high phenotypic variability
and relatively high genetic variability.
5b. Modern Cultivar: A highly selected and modified plant population or clone adapted
exclusively to intensive monocultures with much reduced phenotypic and genetic
variabilities. 

Landscape Domestication is a conscious process by which human manipulation of the
landscape results in changes in landscape ecology and in the demographics of its plant and
animal populations, resulting in a landscape more productive and congenial for humans
(Chase 1989; Harris 1989; Yen 1989). The intensity of manipulation may vary widely: 
1. Pristine: A landscape in which humans have not manipulated plant or animal populations.
It is unlikely that there was much pristine landscape in Amazonia at contact, nor is there
today (Balée 1989; Denevan 1992c; Smith 1995). 
2. Promoted: In this category desirable plant populations and individuals are encouraged
through minimal forest clearance and expansion of the forest fringes (Groube 1989). Even
though there may have been a low level of human intervention, the biotic components of this
landscape may remain modified long after humans have abandoned the area.
3. Managed: In this category the abundance and diversity of food and other useful plant
populations may be further encouraged through partial forest clearance, expansion of the
forest fringes, transplanting of desirable individual plants or planting of individual seeds,
addition of amendments to enhance plant growth, and reduction of competition from non-
useful plants (Alcorn 1989; Anderson and Posey 1989; Groube 1989). Groube (1989) further
divides this class into “forest management” and “forest gardens.” Again, the biotic
components of this landscape may also remain long after humans have abandoned the area
and may account for several of Balée’s (1989) anthropogenic forest types, e.g., some palm,
bamboo, liana forests, and forest islands.
4. Cultivated: This category involves the complete transformation of the biotic landscape to
favor the growth of one or a few selected food plants and other useful populations, through
forest clearance and burning, localized or extensive tillage, seedbed preparation, weeding,
pruning, manuring, mulching, and watering in any combination (Harlan 1992:64). The biotic
components of this very artificial landscape do not survive long after human abandonment
because the changes that favor the growth of the human selected populations also favor the
growth of weeds and the invasion of other secondary forest species; however, it takes a long
time to return to a natural state. The abiotic transformations practiced in this landscape often
survive for long periods, e.g., the earthworks in various parts of lowland northern South
America, such as the Llanos de Mojos (Denevan 1966) or the Llanos del Orinoco (Denevan
and Zucchi 1978).
4a. Swidden/Fallow: This category is the combination of classes (4) and (3), in that order.
The swidden is a cultivated landscape, which yields well for a few years but becomes
progressively more difficult to weed and tend as soil fertility decreases. Useful weeds and
volunteer or transplanted shrubs and trees are managed at progressively lower intensities
until a managed secondary forest results (the fallow) (Denevan and Padoch 1987). This is the
most visible sequence of indigenous landscape domestication in Amazonia today (Roosevelt
1989), but may have been less prevalent before the introduction of metal axes (Denevan
1992d). The managed fallow remains long after humans have abandoned it and may account
for several of Balée’s (1989) anthropogenic forest types, e.g., Brazil nut (Bertholletia
excelsa), bacuri (Platonia insignis), cacao (Theobroma cacao), and pequi (Caryocar
brasiliense) forests [see also Frikel (1978)].



4b. Monoculture: This is a cultivated landscape dominated by only one food plant or other
useful populations. Species quasi-monocultures [e.g., initially dominated by cassava or
maize] are common in new swiddens on the terra firme (the non-flooded surfaces of
Amazonia) and on the várzeas (Roosevelt 1989), and probably existed before contact also.

The phrasing of the above definitions attests to my belief that there is a strong
relationship between landscape and plant domestication in the Americas. Wiersum (1997), in
fact, defined “co-domestication” of crops and landscapes, which may be the best view of this
relationship. There are, however, examples of advanced landscape domestication, verging
upon cultivation, without domesticated plants, such as by the Australian Aborigines (e.g.,
Chase 1989). Furthermore, wild plants can be cultivated without being domesticated (Harlan
1992:64). The inverse is not true, however: domesticated plants, as defined above, cannot be
abandoned in unmanipulated landscapes because they have lost their ecological adaptations
to natural environments (Harlan 1992:64).

Consequently, when Amazonian landscapes modified by humans were abandoned after
European contact, the domesticated plant populations that occurred in them either died out,
suffered their own population (and genetic) contraction, or regressed to the wild genotype
while also becoming rarer. These changes depended upon the degree of population
domestication and life history (herbaceous annuals and semi-perennials; woody perennial
shrubs and trees) of the species in question. The time frames are conjectural, but may be
estimated based upon life histories (Table 1). Little research has been done on this subject,
but the shorter time frames are subject to testing through observation of swidden
abandonment. One example is the pejibaye (Bactris gasipaes), a domesticated palm, that
stops fruiting in second-growth forest when the canopy closes over the palm’s crown 10-15
years after abandonment, thus effectively eliminating the population’s long-term survival
(Clement 1990).

Table 1. The sequence of crop genetic erosion (in years after abandonment) in Amazonia
depended upon degree of domestication and crop life history and stature.

anual semi-perennial perennial

full domesticate 1-3 2-10 10-30

semi-domesticate 2-10 5-20 20-100

incipiente domesticate 5+ 10+ 300+

CROP GENETIC RESOURCES OF AMAZONIA
 León’s (1992) list of cultivated American crops was assessed to identify those that were
probably in Amazonia at contact. Some Andean crops are included, if they commonly occur
below 1000 m above sea level and if there is evidence that they were grown in the lowlands,
although their distribution in the lowlands was generally limited. Patiño’s (1963, 1964)
analisis of the early Spanish chronicles from northern South America provided the major key
for this assessment. Neither source, however, deals specifically with incipiently domesticated
crops. For this category, Balée (1988, 1989), Cavalcante (1991), Frikel (1978) and
Lévi-Strauss (1950) were useful. A preliminary and somewhat subjective [for lack of data
and occasional difficulty of distinguishing wild from incipiently domesticated crops (Lévi-
Strauss 1950)] listing of domesticated, semi-domesticated and incipiently domesticated crops
is presented in Appendices 1, 2 and 3, respectively. 



There were probably at least 138 crops, in 44 botanical families, cultivated, managed or
promoted in Amazonia at contact. This is about 50% of the total for the Americas. Among
the 52 domesticates, 14 are fruit or nut trees or woody vines (27%); among the 41 semi-
domesticates, 35 are trees or woody vines (87%); and among the 45 incipiently domesticated
species, all but one are fruit and nut trees. Overall, 68% of these Amazonian crops are trees
or woody perennials. In an ecosystem characterized by forest, a predominance of tree crops is
not surprising. This predominance may be an artifact of abandonment, however, as
domesticated annuals are expected to disappear more rapidly than perennials (Table 1).

How many crops are not on these lists? Certainly a considerable number, but there is no
way of determining how many. A priori, I had expected the list of domesticates (Appendix 1)
to be shorter than that of the semi-domesticates (Appendix 2) and much shorter than that of
the incipient domesticates (Appendix 3), because only about 200 of the 3000 crops used by
humans worldwide were domesticated (Hawkes 1983:6). While some species may be
misplaced, there is certainly a lack of less derived species on these lists. 

That some have disappeared since contact can be shown, however. Carvajal (1894:56)
commented that, at one point between the Madeira and Tapajós Rivers they “found a lot of
maize, and also a lot of oats, with which the Indians made bread” (my translation). As Patiño
(1964:99) wrote, “we don’t know what ‘oats’ this species was.” It is not cultivated among the
Amerindians and Amazonian peasants anywhere in Amazonia today. At the mouth of the
Amazon River, recent archeological excavations have yielded large quantities of a rice-like
grass (Leersia hexandra) (Roosevelt 1991:25), which may have been the ‘oats’ mentioned by
Carvajal. She mentions early records of apparent Leersia cultivation on Marajó Island shortly
after the arrival of the Portuguese, but there is not enough information to determine if it was
domesticated to any degree (hence its placement in Appendix 3), although Roosevelt’s
analysis is not yet complete. Another possibility is Oryza glumaepatula, found along várzea
lake margins at high density (P. S. Martins, pers. com., 1995), although the early Spanish and
Portuguese explorers would probably have recognized it as ‘rice,’ rather than as ‘oats.’
 Species diversity is only one aspect of crop genetic diversity, the other is infra-specific
diversity. This is where genetic erosion was probably most serious, but it is also the most
difficult to quantify. Each indigenous society and village probably valued crops somewhat
differently, depending upon local preferences and the genetic variability available to them.
Consequently, the selection and propagation effort devoted to each may have been different.
For example, Heliconia hirsuta is a minor root crop found among a few indigenous societies
in Colombian Amazonia today. Very little variability has been observed in the modern
populations. How much existed at contact will never be known. The South American sapota
(Quararibea cordata) is a similar story. At the opposite extreme is cassava, whose variability
is continuing to be amplified today. Among the inhabitants of the Vaupés River, NW
Amazonia, for example, nearly 100 distinct cultivars of bitter and sweet cassava were
recorded at one village (Chernela 1983). Ethnobotanists frequently record 20-50 cultivars per
village in western Amazonia and slightly lower numbers elsewhere. A complex system of
landraces of pejibaye exists in Amazonia, with most genetic diversity in the northwest
(Clement 1988; Mora Urpí 1992). Many major crops and widespread minor crops should
show patterns of genetic diversity similar to that of cassava and pejibaye if they were
intensively cultivated and selected in numerous areas with different microecological variation
and biotic pressures. 

As with species diversity, there exists some evidence that infra-specific diversity has
disappeared since contact. Patiño (1964:147-148) mentions that the maize that existed along
the Amazon River at contact has been replaced by coastal Brazilian maize during recent
centuries. Goodman’s (1976) map of the distribution of South American “Coroico” maizes



includes part of the middle Solimões and western Amazon Rivers and regions to the south,
but does not extend up or down river to areas where maize was reported by Carvajal (1894)
and other chroniclers [see Patiño (1964)]. Amazonian maize is poorly known today (M.M.
Goodman, pers. com., 1994), because of lack of comprehensive collections.

ESTIMATES OF POST-CONTACT AMAZONIAN POPULATION LOSS
 Gaspar de Carvajal (1894), the chronicler of the first European descent of the Amazon
River in 1542, reported dense Amerindian populations along the Amazonian várzeas and
adjacent terra firme. By the time European naturalists arrived in the region 200-300 years
later, these populations had disappeared and Carvajal’s account was discredited. The subject
of Amazonian population density and associated level of cultural complexity is hotly
contested today (Meggers 1993-5)

Meggers (1992b) offered the lowest recent estimate (1.5-2 million people in the Amazon
Basin proper), based upon an average density of 0.3 persons/km2. Meggers based her
estimate on the terra firme’s low carrying capacity and the riskiness of várzea cultivation. At
the other extreme is Myers (1988), who estimated 10 million in the Upper Amazon alone
(essentially Amazonian Peru and Ecuador, and far western Brazil). Extrapolated to the rest of
Amazonia, this suggests more than 30 million, or more than 4 persons/km2, higher than the
modern population. 

Denevan (1996) recently lowered his earlier estimates (1992a, b) of 5-6 million in the
Amazon Basin proper and 6-8 in lowland northern South America to 3-5 in the Basin and 5-7
in northern South America. His 1992 analyses included then current hypotheses of carrying
capacity and pre-historic subsistence and agricultural technologies used in the various
Amazonian ecosystems, and allowed for severe decline from disease and slavery, while
cautiously accepting early historical accounts. His 1996 analysis emphasized the patchiness
of human distributions, caused both by the patchiness of environments, especially suitable
bluffs along the major rivers (Denevan 1992d), and by possible buffer zones between the
larger societies, especially along the main rivers. Denevan provided estimates for each of
Amazonia’s various ecosystems. Amongst the most important were the várzeas, with
estimated densities of up to10 persons/km2, possibly locally to 28 persons/km2 on the
Solimões and the Amazon Rivers; of 2 persons/km2 in the Llanos de Mojos but possibly 28
persons/km2 around the earthworks; of 9.5 persons/km2 along the Brazilian coast south of
Amazonia; of 0.3 persons/km2 in the terra firme interfluvial forests; and 0.5 persons/km2

overall.
Areas with high population densities are most important when considering crop genetic

diversity. To support such densities, social organization must be more elaborate than at low
density. As a corollary, agricultural and other subsistence technologies must be intensified
(Roosevelt 1991:5, 1993), although they may less sustainable. The intensification implies
greater crop genetic diversity, because the intensified agricultural systems must be able to
withstand pest and disease pressures. The relationship between diversity and agricultural
intensification in pre-modern tropical and sub-tropical societies is essential to understanding
why so much crop genetic diversity is found in this geographic area. Pre-modern societies in
the tropics had few means of controlling pest and disease outbreaks other than genetic
diversity, intercropping and swidden rotation (Altieri 1995:112-113), except in the
floodplains where the annual flood cycle acts to reduce pest and disease populations in most
years, just as winter cold or annual drought acts to reduce these populations in temperate
regions.

In general, advanced agricultural societies accumulate crop genetic resources, both
creating and importing them, as part of their agricultural intensification. This is the major



reason that several of Vavilov’s (1992a, b) centers of crop genetic diversity are related to
complex societies (Hawkes 1983:67), e.g., in the Americas, the Inca and pre-Inca
civilizations are associated with the Peru/Bolivia center, and the Maya and Aztec
civilizations with the MesoAmerican center. As paleoethnobotanical research expands in
South America, the longest lists of crops are from areas where good conditions exist for
archaeological artifact preservation and where complex societies with high population
densities and advanced agricultural technologies existed (Pearsall 1992). In Amazonia, areas
with higher population density in the pre-Columbian period should also exhibit a rich crop
genetic heritage but the poor environment for archaeological preservation and lack of
research effort have not yielded much information to date. Consequently living biological
evidence is critical, but there are few clear patterns in Amazonian crop biogeography today,
except in NW Amazonia (Clement 1989). The lack of clear patterns suggests that the loss of
the Amazonian Amerindian population affected the crop genetic heritage severely.

Dobyns (1966) estimated that 90-95% of the Neotropical population was lost within
100-200 years after contact. Disease was the principal agent (Dobyns 1966), but
missionization, slavery and warfare contributed importantly (Hemming 1978). In Amazonia,
this meant a collapse from 3-5 million to a low of about 200,000. Today there are perhaps
500,000 Amerindians in lowland northern South America (Denevan 1992b), often organized
in small bands and restricted to the terra firme, with relatively simple agricultural and
subsistence technologies. Many are already extensively acculturated. How then did this
human population collapse effect crop genetic resources?

THE CONSEQUENCES OF POPULATION DECLINE
Although individual farmers are responsible for selecting and propagating crops, the

village is the unit of interest because it identifies a domesticated plant population. Farmers
within a village exchange germplasm and influence each others’ preferences and planting
strategies. There is probably less exchange between villages than within, and less still
between villages of different language groups (cf Chernela 1987), because there is simply
less contact in general. Myths of crop origins in Amazonia, for example, sometimes
acknowledge the prowess of a farmer for stealing germplasm from a neighboring society (J.
Chernela, pers. com., 1986), which would not be necessary if there was easy exchange.
Consequently, the fate of the village determined the fate of its crop genetic resources during
the post-contact population collapse. 
 The larger indigenous Amazonian societies consisted of numerous villages. Those that
dominated the várzeas may have had many large and numerous small villages, while those
restricted to the terra firme may have had only small villages. It is possible that the 90-95%
population decline resulted in an equal loss of village units, although village members would
attempt to escape from disease epidemics or slave raids, rather than stay and die (Denevan
1992a). 

Loss in human numbers was quickly reflected in a loss of crop diversity at the village site
as the forest reclaimed the landscape (Table 1). Balée (1992) presented the example of the
Guajá of eastern Amazonia, who regressed from village horticulturalists to nomadic hunter-
gatherers that depend upon the fallows of other societies or managed forests left by
predecessors. In the process of regression, their repertory of crops diminished rapidly to only
a few crops with short life histories.

Given the extent of population loss, I feel that it is reasonable to hypothesize that 70-80%
of the pre-contact village groups either disappeared completely, or were severely reduced and
then absorbed by other groups, or regressed to a non-agricultural state. The major várzea
societies, such as the Omagua on the Solimões River, disappeared almost completely



(Roosevelt 1993). It is this low level of human survival in such important areas as the
Omagua that is responsible for the tantalizing hints of a richer crop genetic past. 

Although there is no direct evidence of how the loss of the human population was
reflected in the loss of genetic resources, a synthesis of the information and ideas presented
here permits an order of magnitude estimate. Genetic erosion after contact depended not only
upon population decline but upon the degree of domestication of each crop, its life history,
the agroecosystem in which it was cultivated or managed, and the number of crops
maintained by each human society. I think that it is safe to assume that the Amazonian crop
genetic heritage at contact was at least an order of magnitude greater than it is today.
Unfortunately, even its current magnitude is poorly known for most crops, the partial
exceptions being Bactris gasipaes, Elaeis oleifera, Hevea brasiliensis and Theobroma cacao,
because they were extensively prospected during the early 1980s by Brazilian institutions.

MODERN CROP GENETIC EROSION
After the post-contact decline of Amazonian Amerindians, their populations stabilized

and then expanded again, to about 500,000 today (Denevan 1992b). The number of societies
continues to decline, however (Burger 1987; Clay 1990). During this century, the
acculturation of the remaining Amerindians has accelerated, caused by the immigration of
northeastern Brazilians to tap rubber during the late 19th century boom, the attempts by
governments to occupy the region after World War II through directed colonization, and the
spontaneous colonization that accompanied various infrastructure projects of the 1960-90
period (Hecht and Cockburn 1990).

After the Brazilian revolution of 1964, the government decided that Amazonia must be
occupied by ‘Brazilians.’ This was and remains an issue of ‘national security’ (Hecht and
Cockburn 1990:104-141). The first major initiative was the Trans-Amazon highway system,
which started the era of reliance on roads, rather than Amazonia’s extensive network of
navigable rivers. This highway system made its strongest impact on eastern and southern
Amazonia. In central Amazonia, the creation of the Free Zone of Manaus in 1967 had the
greatest impact, as financial resources were funneled towards establishing industries in
Manaus, rather than supporting trade between the hinterlands and the city. As traders stopped
working, the interior of this vast region was essentially abandoned by government, and
peasants started to migrate to Manaus and other urban centers. The 1970s saw the initiation
of other large infrastructure projects, such as the Tucuruí Hydroelectric Dam, the
encouragement of cattle pasture expansion, and the definition of PoloAmazonia’s
development targets. In the 1980s, Rondônia and Acre were opened by paving the Cuiabá-
Porto Velho highway. By the late 1980s, Amazonia had become a focus of world attention
because of the fires that accompanied deforestation (Hecht and Cockburn 1990:52-54). All
these initiatives resulted in localized extinction of biodiversity and continued acculturation of
the original Amazonians and their descendents.

Other modern Amazonian nations have followed roughly similar trajectories, with similar
results. In Bolivia, Colombia, Ecuador and Peru, the poorer populations of the Andes were
often encouraged to settle in the Amazonian lowlands, and governments are providing at
least a part of the infrastructure necessary to further the migration. Peru and Ecuador have
struck oil on the eastern slopes of the Andes and the boom has accelerated migration to those
regions. In these areas, biodiversity, Amerindian cultures and crop genetic resources are
disappearing rapidly, as occurs in numerous other parts of the world when modern societies
displace indigenous and folk societies (Smith et al. 1992).

The late 1970s and 1980s also saw the first attempts at systematic evaluation of a few of
Amazonia’s crop genetic resources. Coordinated by the Brazilian National Center for Genetic



Resources (CENARGEN), important collections of Bactris gasipaes, Elaeis oleifera, and
Hevea brasiliensis were made. Collections of Theobroma cacao were made by the National
Cacao Board (CEPLAC). Both the National Research Institute for Amazonia (INPA) and the
Center for Agricultural Research in the Humid Tropics (CPATU) made casual collections of
dozens of other species (Clement 1991; Clement, Müller and Chávez Flores 1982).
Nonetheless, the germplasm saved is minuscule in comparison with the presumed erosion of
the crop genetic resources of Amazonia and their wild populations and relatives caused by
modern ‘development.’ In sum, the erosion of Amazonian crop genetic resources is presumed
to have continued during the premodern and modern eras and appears to be accelerating as
deforestation and acculturation proceed.

What trends are likely? Most Amazonian governments sponsor, or acquiesce to,
acculturation of their Amazonian Amerindian populations, either as a conscious policy or by
lack of action to protect the Amerindians from unwanted, forced contact with colonists
(Treece 1990). Colombia, Ecuador and Venezuela are partial exceptions. Although several
countries protect the rights of their indigenous populations on paper, few protect these rights
on the ground. Recent efforts in Brazil, sponsored by the World Bank and the G-7, are aimed
at changing this reality but it is still too early to measure their impact. Given the rapid
expansion of non-indigenous populations, also demanding rights, land and government
support, trends are unlikely to change enough to make a difference, unless governments alter
their policies and enforce them.

Deforestation proceeds, although it slowed somewhat in the early 1990 due to an
economic recession in many countries (Fearnside 1993). Strong systemic forces drive
deforestation in Amazonia (Barbosa 1993) and are unlikely to change direction soon,
although some popular movements are working to promote change. Some countries, such as
Brazil, are reviewing government policies that favor deforestation, but social pressures to
deforest are as yet unabated. Increasing poverty, combined with the still rapid population
growth, are the major social pressures. Continued deforestation inevitably results in loss of
biodiversity and associated crop genetic resources, many of which occur in formerly
managed forests, now abandoned by their Amerindian creators (Smith and Schultes 1990;
Smith et al. 1992).

Ex situ collections of most tropical crop genetic resources are inadequate, poorly
maintained, and poorly financed because of low government priority and conflicting
economic demands throughout the Third World (Fowler and Mooney 1990:201-222; Harlan
1992:239-243). Even some Brazilian collections made in the 1980s are in danger of being
lost, either by institutional apathy and budgetary restrictions (e.g., B. gasipaes) or by biotic
pressures (e.g., H. brasiliensis). Only a few in situ genetic reserves exist on the ground; these
are focused on forest species (E. Lleras, pers. com., 1990), few of which are even incipiently
domesticated. Current trends suggest that central government budgets for genetic resource
conservation will continue to shrink in Amazonia, although some international efforts are
expanding (e.g., the Pilot Program for the Conservation of the Brazilian Rain Forest, financed
by the World Bank, the G-7, and the government of Brazil, and the Global Environment
Facility (World Bank, UNDP, UNEP) has initiated a new in situ program with
CENARGEN).

One promising new trend is an international (and national in some countries) interest in
exotic foods and natural sources of some industrial products, especially from Amazonia
(Clay 1996:v-x; Smith et al. 1992:448-460). This interest has the potential of stimulating
plantations in Amazonia to supply the emerging demand, but must overcome a series of
limitations in order to compete internationally (Clement 1997). Given the fragility of most
regional institutions and the likelihood of continually smaller institutional budgets as



Amazonian countries adapt to increased globalization, reverting the trends towards increased
genetic erosion will require not only the development of numerous ‘new crops’ but a new
focus by Amazonian research institutions - participatory plant improvement and community
conservation of genetic resources (Engels 1995). 
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Appendix 1. Probably domesticated crops grown in Amazonia at contact (Brücher 1989; León 1987, 1992;
Patiño 1963, 1964; Pearsall 1992; Pickersgill and Heiser 1977; Schultes 1984; Schultes and Hofmann 1979).

Species Family Probable origin Uses

Annona muricata L. Anonaceae N. S. America fruit

Rollinia mucosa (Jacq.) Baillón “ Amazonia fruit

Xanthosoma brasiliense Engler Araceae N. S. America vegetable

X. sagittifolium (L.) Schott “ N. S. America root

Crescentia cujete L. Bignoniaceae N. S. America tree gourd

Bixa orellana L. Bixaceae S. W. Amazonia colorant

Ananas comosus (L.) Merrill. Bromeliaceae Brazil/Paraguay fruit

A. erectifolius L.B. Smith “ Amazonia fiber

Neoglaziovia variegata Mez. “ N. S. America fiber

Canna edulis Ker. Cannaceae Andes/W Amaz root

Carica papaya L. Caricaceae MesoAmerica fruit

Eupatorium ayapana Vent. Compositae Amazonia condiment

Spilanthes acmella (L.) Murr. “ Amazonia condiment

S. oleracea Jacq. “ Amazonia condiment

Ipomoea batatas (L.) Lam. Convolvulaceae N. S. America root

Cucurbita maxima Duch. Cucurbitaceae E. Bolivia vegetable

C. moschata Duch. ex. Poir. “ MesoAmerica vegetable

Cyclanthera pedata Schrad. “ N. S. America vegetable

Lagenaria siceraria Standl. “ Africa gourd

Sicana odorifera (Vell.) Naud. “ Brazil/Paraguay vegetable

Cyperus sp. Cyperaceae Amazonia? condiment

Dioscorea trifida L. f. Dioscoreaceae Guianas root

Erythroxylum coca Lam. Erythroxylaceae Central Andes stimulant

Manihot esculenta Crantz Euphorbiaceae N. S. America root

Zea mays L. Gramineae MesoAmerica cereal

Poraqueiba paraensis Ducke Icacinaceae E. Amazonia fruit,oil

P. sericea Tul. “ W. Amazonia fruit,oil



Appendix 1 (continued). Probably domesticated crops grown in Amazonia at contact.
Species Family Probable origin Uses

Persea americana Mill. Lauraceae MesoAmerica fruit

Arachis hypogaea L. Leg. Papilionoidae Brazil/Paraguay seed

Canavalia ensiformis (L.) DC “ N. S. America seed

C. plagiosperma Piper “ MesoAmerica seed

Phaseolus lunatus L. “ N. S. America seed

P. vulgaris L. “ N. S. America seed

Pachyrhizus tuberosus Spreng. “ W. Amazonia root

Gossypium barbadense L. Malvaceae N. S. America fiber

G. hirsutum L. “ MesoAmerica fiber

Calathea allouia (Aubl.) Lindl. Marantaceae Amazonia root

Maranta arundinacea L. “ N. S. America root

Bactris gasipaes Kunth Palmae S. W. Amazonia fruit

Passiflora edulis Sims Passifloraceae N. S. America fruit

P. quadrangularis L. “ N. S. America fruit

Genipa americana L. Rubiaceae N. S. America colorant

Paullinia cupana Kunth Sapindaceae C. Amazonia stimulant

Pouteria caimito Radlk. Sapotaceae Amazonia fruit

Brugmansia insignis Lockwood Solanaceae W. Amazonia drug

B. suaveolens Bercht. & Presl. “ W. Amazonia drug

Capsicum baccatum L. “ Bolivia condiment

C. chinense Jacq. “ W. Amazonia condiment

Nicotiana rustica L. “ N. S. America stimulant

N. tabacum L. “ N. S. America stimulant

Solanum sessiliflorum Dunal “ W. Amazonia fruit

Cissus gongyloides Burch. Vitaceae Amazonia vegetable



Appendix 2. Probably semi-domesticated crops grown in Amazonia at contact (Brücher 1989; León 1987, 1992;
Patiño 1963, 1964; Pickersgill and Heiser 1977; Schultes and Hofmann 1979).
Species Family Probable origin Uses

Anacardium occidentale L. Anacardiaceae N. E. Brazil? fruit, nut

Spondias mombin L. “ N. S. America fruit

Annona montana Macf. Anonaceae Amazonia fruit

A. reticulata L. “ MesoAmerica fruit

Macoubea witotorum Schultes Apocynaceae W. Amazonia fruit juice

Thevetia peruvianum Merr. “ C. Andes poison

Ilex guayusa Loes. Aquifoliaceae N. W. Amazonia stimulant

Mansoa alliacea (Lam.) Gentry Bignoniaceae W. Amazonia condiment

Quararibea cordata Vischer Bombacaceae W. Amazonia fruit

Couepia subcordata Benth Chrysobalanaceae Amazonia fruit

Clibadium sylvestre Baill. Compositae N. S. America poison

Dioscorea dodecaneura Steud. Dioscoreaceae Amazonia root

Phyllanthus acuminatus Vahl. Euphorbiaceae N. S. America poison

Mammea americana L. Guttiferae Antilles fruit

Platonia insignis Mart. “ E. Amazonia fruit,seed?

Heliconia hirsuta L. f. Heliconiaceae W. Amazonia root

Cassia leiandra Benth. Leg. Caesalpinoidae Amazonia fruit

Anadenanthera peregrina Speg. Leg. Mimosoidae N. S. America drug

Inga cinnamomea Benth. “ Amazonia fruit

I. edulis Mart. “ W. Amazonia fruit

I. feuillei DC “ W. Amazonia fruit

I. macrophylla H.B.K. “ W. Amazonia fruit



Appendix 2 (continued). Probably semi-domesticated crops grown in Amazonia at contact.
Species Family Probable origin Uses

Lonchocarpus utilis Smith Leg. Papilionoidae Amazonia poison

Banisteriopsis caapi Morton Malpigiaceae W. Amazonia drug

B. inebrians Morton “ W. Amazonia drug

Bunchosia armeniaca DC “ Amazonia fruit

Byrsonima crassifolia H.B.K. “ MesoAmerica fruit

Maranta ruiziana Korn. Marantaceae W. Amazonia root

Pourouma cecropiifolia Mart. Moraceae W. Amazonia fruit

Eugenia stipitata McVaugh Myrtaceae W. Amazonia fruit

Myrciaria cauliflora McVaugh “ S. Brazil fruit

Psidium guajava L. “ N. E. Brazil fruit

Astrocaryum aculeatum Meyer Palmae W. Amazonia fruit

Talinum triangulare Willd. Portulacaceae N. S. America vegetable

Borojoa sorbilis Cuatr. Rubiaceae Amazonia fruit

Paullinia yoco Schult. & Killip Sapindaceae W. Amazonia stimulant

Pouteria macrocarpa Baehni Sapotaceae Amazonia fruit

P. macrophylla (Lam.) Eyma. “ Amazonia fruit

P. obovata H.B.K. “ C. Andes fruit

Theobroma bicolor H. & B. Sterculiaceae W. Amazonia fruit,seed

T. cacao L. “ W. Amazonia stimulant



Appendix 3. Some species with incipiently domesticated populations in Amazonia at contact (Balée 1988, 1989;
Cavalcante 1991; León 1987, 1992; Lévi-Strauss 1950; Patiño 1963, 1964).
Species Family Probable origin Uses

Couma utilis Muell. Apocynaceae Amazonia fruit,latex

Hancornia speciosa Gomes “ N. E. Brazil fruit,latex

Caryocar glabrum (Aubl.) Pers. Caryocaraceae W. Amazonia nut

C. nuciferum L. “ N. S. America nut

C. villosum (Aubl.) Pers. “ C. Amazonia fruit

Chrysobalanus icaco L. Chrysobalanaceae N. S. America fruit

Couepia bracteosa Benth. “ C. Amazonia fruit

C. edulis Prance “ Amazonia nut

C. longipendula Pilger “ Amazonia nut

Caryodendron orinocense Karst. Euphorbiaceae W. Amazonia nut

Hevea spp. (various) “ Amazonia seed, latex

Leersia hexandra Sw. Graminae E. Amazonia seed

Rheedia brasiliensis Pl. & Tr. Guttiferae Amazonia fruit

R. macrophylla Planch & Triana “ Amazonia fruit

Bertholletia excelsa H. & B. Lecythidaceae E. Amazonia nut

Lecythis pisonis Camb. “ Amazonia nut

Grias neubertii MacBride “ W. Amazonia fruit

G. peruviana Miers “ W. Amazonia fruit

Hymenaea courbaril L. Leg. Caesalpinioidae Amazonia starchy fruit

Campsiandra comosa Cowan Leg. Mimosoidae N. W. Amazonia fruit

Inga spp. (numerous) “ Amazonia fruit

Lonchocarpus nicou (Aubl.) DC Leg. Papilionoidae Amazonia poison

Lonchocarpus urucu Smith “ Amazonia poison



Appendix 3 (continued). Some species with incipiently domesticated populations in Amazonia at contact.
Species Family Probable origin Uses

Eugenia uniflora L. Myrtaceae S. America fruit

Psidium acutangulum DC “ Amazonia fruit

P. guineensis Sw. “ N. S. America fruit

Acrocomia aculeata (Jacq.) Lood Palmae E. Amazonia oily fruit

Astrocaryum murumuru Mart. “ E. Amazonia oily fruit

Elaeis oleifera (H.B.K.) Cortés “ N. S. America oily fruit

Euterpe oleracea Mart. “ E. Amazonia oily fruit

Jessenia bataua (Mart.) Burret “ N. S. America oily fruit

Mauritia flexuosa L. f. “ N. S. America oily fruit

Maximiliana maripa Drude “ E. Amazonia oily fruit

Oenocarpus bacaba Mart. “ Amazonia oily fruit

O. distichus Mart. “ E. Amazonia oily fruit

Alibertia edulis A. Rich ex DC Rubiaceae Amazonia fruit

Melicoccus bijugatus Jacq. Sapindaceae C. & N. S. America fruit

Talisia esculenta Radlk. “ W. Amazonia fruit

Manilkara huberi (Huber) Standl. Sapotaceae Amazonia fruit, latex

Pouteria spp. (numerous) “ Amazonia fruit

Sterculia speciosa K. Sch. Sterculiaceae Amazonia fruit

Theobroma grandiflorum Schum. “ E. Amazonia fruit

T. speciosum Willd. “ Amazonia fruit

T. subincanum Mart. “ Amazonia fruit

Erisma japura Spruce Vochysiaceae N. W. Amazonia fruit


